Transistor ( BJT )

08:43 / Posted by tech data /

The transistor is a semiconductor device than can function as a signal amplifier or as a solid-state switch. A typical switching circuit using a PNP transistor is shown at the left.


In a transistor a very small current input signal flowing emitter-to-base is able to control a much larger current which flows from the system power supply, through the transistor emitter-to-collector, through the load, and back to the power supply.



In this example the input control signal loop is shown in red and the larger output current loop is shown in blue. With no input the transistor will be turned OFF (cutoff) and the relay will be dropped out. When the low-level input from the PLC microprocessor turns the transistor ON (saturates) current flows from the power supply, through the transistor, and picks the relay.



There are many transistor case designs. Some conform to JEDEC Standards and are defined by Transistor Outline (TO) designations. Several case designs are illustrated below. Solid -state devices other than transistors are also housed in these same packages. In general, the larger the unit, the greater the current or power rating of the device.


Bipolar transistors have the following characteristics:

  • Bipolar transistors are a three-lead device having an Emitter, a Collector, and a Base lead.
  • The Bipolar transistor is a current driven device. A very small amount of current flow emitter-to-base (base current measured in microamps - mA) can control a relatively large current flow through the device from the emitter to the collector (collector current measured in milliamps - mA). Bipolar transistors are available in complimentary polarities. The NPN transistor has an emitter and collector of N-Type semiconductor material and the base material is P-Type semiconductor material. In the PNP transistor these polarities are reversed: the emitter and collector are P-Type material and the base is N-Type material.
  • NPN and PNP transistors function in essentially the same way. The power supply polarities are simply reversed for each type. The only major difference between the two types is that the NPN transistor has a higher frequency response than does the PNP (because electron flow is faster than hole flow). Therefore high frequency applications will utilize NPN transistors.

0 comments:

Post a Comment