INTRODUCTION
Tidal energy can be exploited in two ways:
- By building semi-permeable barrages across estuaries with a high tidal range.
- By harnessing offshore tidal streams.
Source of Tidal Energy
•Gravitational mass of sun and moon pull on earth’s oceans
•Causes water to rise and fall
•Greatest range occurs when sun and moon pull in same direction (spring tide)
•Weakest when sun and moon in opposition (neap tide)
Good areas for exploiting tidal energy
Tidal range may vary over a wide range (4.5-12.4 m) from site to site. A tidal range of at least 7 m is required for economical operation and for sufficient head of water for the turbines. Hammerfest Traditional tidal electricity generation involves the construction of a barrage across an estuary to block the incoming and outgoing tide. The dam includes a sluice that is opened to allow the tide to flow into the basin; the sluice is then closed, and as the sea level drops, the head of water (elevated water in the basin) using traditional hydropower technology, drives turbines to generate electricity. Barrages can be designed to generate electricity on the ebb side, or flood side, or both.
Tidal range may vary over a wide range (4.5-12.4 m) from site to site. A tidal range of at least 7 m is required for economical operation and for sufficient head of water for the turbines. A 240 MWe facility has operated in France since 1966, 20 MWe in Canada since 1984, and a number of stations in China since 1977, totaling 5 mWw. Tidal energy schemes are characterised by low capacity factors, usually in the range of 20-35%.
The waters off the Pacific Northwest are ideal for tapping into an ocean of power using newly developed undersea turbines. The tides along the Northwest coast fluctuate dramatically, as much as 12 feet a day. The coasts of Alaska, British Columbia and Washington, in particular, have exceptional energy-producing potential. On the Atlantic seaboard, Maine is also an excellent candidate. The undersea environment is hostile so the machinery will have to be robust.
Currently, although the technology required to harness tidal energy is well established, tidal power is expensive, and there is only one major tidal generating station in operation. This is a 240 megawatt (1 megawatt = 1 MW = 1 million watts) at the mouth of the La Rance river estuary on the northern coast of France (a large coal or nuclear power plant generates about 1,000 MW of electricity). The La Rance generating station has been in operation since 1966 and has been a very reliable source of electricity for France. La Rance was supposed to be one of many tidal power plants in France, until their nuclear program was greatly expanded in the late 1960's. Elsewhere there is a 20 MW experimental facility at Annapolis Royal in Nova Scotia, and a 0.4 MW tidal power plant near Murmansk in Russia. UK has several proposals underway.
Studies have been undertaken to examine the potential of several other tidal power sites worldwide. It has been estimated that a barrage across the Severn River in western England could supply as much as 10% of the country's electricity needs (12 GW). Similarly, several sites in the Bay of Fundy, Cook Inlet in Alaska, and the White Sea in Russia have been found to have the potential to generate large amounts of electricity.
Impact on the environment
Tidal energy is a renewable source of electricity which does not result in the emission of gases responsible for global warming or acid rain associated with fossil fuel generated electricity. Use of tidal energy could also decrease the need for nuclear power, with its associated radiation risks. Changing tidal flows by damming a bay or estuary could, however, result in negative impacts on aquatic and shoreline ecosystems, as well as navigation and recreation.
The few studies that have been undertaken to date to identify the environmental impacts of a tidal power scheme have determined that each specific site is different and the impacts depend greatly upon local geography. Local tides changed only slightly due to the La Rance barrage, and the environmental impact has been negligible, but this may not be the case for all other sites. It has been estimated that in the Bay of Fundy, tidal power plants could decrease local tides by 15 cm. This does not seem like much when one considers that natural variations such as winds can change the level of the tides by several metres.
Costs of tidal energy
Tidal power is a form of low-head hydroelectricity and uses familiar low-head hydroelectric generating equipment, such as has been in use for more than 120 years. The technology required for tidal power is well developed, and the main barrier to increased use of the tides is that of construction costs. There is a high capital cost for a tidal energy project, with possibly a 10-year construction period. Therefore, the electricity cost is very sensitive to the discount rate.
The major factors in determining the cost effectiveness of a tidal power site are the size (length and height) of the barrage required, and the difference in height between high and low tide. These factors can be expressed in what is called a site's "Gibrat" ratio. The Gibrat ratio is the ratio of the length of the barrage in metres to the annual energy production in kilowatt hours (1 kilowatt hour = 1 KWH = 1000 watts used for 1 hour). The smaller the Gibrat site ratio, the more desireable the site. Examples of Gibrat ratios are La Rance at 0.36, Severn at 0.87 and Passamaquoddy in the Bay of Fundy at 0.92.
Offshore tidal power generators use familiar and reliable low-head hydroelectric generating equipment, conventional marine construction techniques, and standard power transmission methods. The placement of the impoundment offshore, rather than using the conventional "barrage" approach, eliminates environmental and economic problems that have prevented the deployment of commercial-scale tidal power plants.
Three projects (Swansea Bay 30 MW, Fifoots Point 30 MW, and North Wales 432 MW) are in development in Wales where tidal ranges are high, renewable source power is a strong public policy priority , and the electricity marketplace gives it a competitive edge. Q. What are some of the devices for tidal energy conversion? The technology required to convert tidal energy into electricity is very similar to the technology used in traditional hydroelectric power plants. The first requirement is a dam or "barrage" across a tidal bay or estuary. Building dams is an expensive process. Therefore, the best tidal sites are those where a bay has a narrow opening, thus reducing the length of dam which is required. At certain points along the dam, gates and turbines are installed. When there is an adequate difference in the elevation of the water on the different sides of the barrage, the gates are opened. This "hydrostatic head" that is created, causes water to flow through the turbines, turning an electric generator to produce electricity.
Electricity can be generated by water flowing both into and out of a bay. As there are two high and two low tides each day, electrical generation from tidal power plants is characterized by periods of maximum generation every twelve hours, with no electricity generation at the six hour mark in between. Alternatively, the turbines can be used as pumps to pump extra water into the basin behind the barrage during periods of low electricity demand. This water can then be released when demand on the system its greatest, thus allowing the tidal plant to function with some of the characteristics of a "pumped storage" hydroelectric facility.
The technology required to convert tidal energy into electricity is very similar to the technology used in traditional hydroelectric power plants. The first requirement is a dam or "barrage" across a tidal bay or estuary. Building dams is an expensive process. Therefore, the best tidal sites are those where a bay has a narrow opening, thus reducing the length of dam which is required. At certain points along the dam, gates and turbines are installed. When there is an adequate difference in the elevation of the water on the different sides of the barrage, the gates are opened. This "hydrostatic head" that is created, causes water to flow through the turbines, turning an electric generator to produce electricity.
Electricity can be generated by water flowing both into and out of a bay. As there are two high and two low tides each day, electrical generation from tidal power plants is characterized by periods of maximum generation every twelve hours, with no electricity generation at the six hour mark in between. Alternatively, the turbines can be used as pumps to pump extra water into the basin behind the barrage during periods of low electricity demand. This water can then be released when demand on the system its greatest, thus allowing the tidal plant to function with some of the characteristics of a "pumped storage" hydroelectric facility.